o
    g3                    @   s  d Z ddlmZ ddlmZ ddlmZ ddlmZm	Z	m
Z
 ddlmZmZmZ ddlmZ ddlmZ dd	lmZ dd
lmZmZ ddlmZ ddlmZmZmZ ddlmZm Z m!Z! ddl"m#Z#m$Z$ ddl%m&Z&m'Z' ddl(m)Z)m*Z*m+Z+ ddl,m-Z-m.Z. ddl/m0Z0m1Z1m2Z2 ddl3m4Z4m5Z5 dDddZ6G dd deZ7G dd deZ8G dd deZ9G dd deZ:G dd  d eZ;G d!d" d"eZ<G d#d$ d$eZ=G d%d& d&eZ>G d'd( d(eZ?d)d* Z@G d+d, d,eZAG d-d. d.eZBG d/d0 d0eZCG d1d2 d2eCZDG d3d4 d4eCZEG d5d6 d6eCZFG d7d8 d8eCZGG d9d: d:eZHG d;d< d<eHZIG d=d> d>eHZJG d?d@ d@eZKG dAdB dBeZLdCS )Ez This module contains various functions that are special cases
    of incomplete gamma functions. It should probably be renamed.     )
EulerGamma)Add)cacheit)FunctionArgumentIndexError
expand_mul)IpiRational)is_eq)Pow)S)Dummyuniquely_named_symbol)sympify)	factorial
factorial2RisingFactorial)
polar_liftre
unpolarify)ceilingfloor)sqrtroot)explog	exp_polar)coshsinh)cossinsinc)hypermeijergTc                 K   s   | j d jr|rd|d< | j|fi |tjfS | tjfS |r0| j d j|fi | \}}n	| j d  \}}| |t|  | |t|   d }| |t|  | |t|   dt  }||fS )Nr   Fcomplex   )argsis_extended_realexpandr   Zeroas_real_imagfuncr   )selfdeephintsxyr   im r3   ^/var/www/visachat/venv/lib/python3.10/site-packages/sympy/functions/special/error_functions.pyreal_to_real_as_real_imag   s   
"(,r5   c                       s   e Zd ZdZdZd,ddZd,ddZedd	 Ze	e
d
d Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zd-d!d"Zd#d$ Zd%d& Zd.d(d)Z fd*d+ZeZ  ZS )/erfa.  
    The Gauss error function.

    Explanation
    ===========

    This function is defined as:

    .. math ::
        \mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \mathrm{d}t.

    Examples
    ========

    >>> from sympy import I, oo, erf
    >>> from sympy.abc import z

    Several special values are known:

    >>> erf(0)
    0
    >>> erf(oo)
    1
    >>> erf(-oo)
    -1
    >>> erf(I*oo)
    oo*I
    >>> erf(-I*oo)
    -oo*I

    In general one can pull out factors of -1 and $I$ from the argument:

    >>> erf(-z)
    -erf(z)

    The error function obeys the mirror symmetry:

    >>> from sympy import conjugate
    >>> conjugate(erf(z))
    erf(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(erf(z), z)
    2*exp(-z**2)/sqrt(pi)

    We can numerically evaluate the error function to arbitrary precision
    on the whole complex plane:

    >>> erf(4).evalf(30)
    0.999999984582742099719981147840

    >>> erf(-4*I).evalf(30)
    -1296959.73071763923152794095062*I

    See Also
    ========

    erfc: Complementary error function.
    erfi: Imaginary error function.
    erf2: Two-argument error function.
    erfinv: Inverse error function.
    erfcinv: Inverse Complementary error function.
    erf2inv: Inverse two-argument error function.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Error_function
    .. [2] https://dlmf.nist.gov/7
    .. [3] https://mathworld.wolfram.com/Erf.html
    .. [4] https://functions.wolfram.com/GammaBetaErf/Erf

    T   c                 C   s2   |dkrdt | jd d   tt S t| |Nr7   r&   r   r   r'   r   r	   r   r-   argindexr3   r3   r4   fdiff       
z	erf.fdiffc                 C      t S z8
        Returns the inverse of this function.

        erfinvr:   r3   r3   r4   inverse      zerf.inversec                 C   s   |j r!|tju rtjS |tju rtjS |tju rtjS |jr!tjS t	|t
r+|jd S t	|tr8tj|jd  S |jr>tjS t	|trN|jd jrN|jd S |t}|tjtjfv r]|S | rg| |  S d S Nr   r7   )	is_Numberr   NaNInfinityOneNegativeInfinityNegativeOneis_zeror*   
isinstancerA   r'   erfcinverf2invextract_multiplicativelyr   could_extract_minus_signclsargtr3   r3   r4   eval   s.   







zerf.evalc                 G   s   | dk s
| d dkrt jS t|}t| d t d }t|dkr2|d  |d  | d  | |  S dt j|  ||   | t| tt  S Nr   r&   r7   )	r   r*   r   r   lenrJ   r   r   r	   nr0   previous_termskr3   r3   r4   taylor_term   s   "*zerf.taylor_termc                 C      |  | jd  S Nr   r,   r'   	conjugater-   r3   r3   r4   _eval_conjugate      zerf._eval_conjugatec                 C      | j d jS r_   r'   r(   rb   r3   r3   r4   _eval_is_real      zerf._eval_is_realc                 C   s   | j d jrdS | j d jS Nr   T)r'   	is_finiter(   rb   r3   r3   r4   _eval_is_finite   s   zerf._eval_is_finitec                 C   re   r_   r'   rK   rb   r3   r3   r4   _eval_is_zero   rh   zerf._eval_is_zeroc                 K   s:   ddl m} t|d | tj|tj|d tt   S Nr   
uppergammar&   'sympy.functions.special.gamma_functionsrp   r   r   rH   Halfr	   r-   zkwargsrp   r3   r3   r4   _eval_rewrite_as_uppergamma   s   .zerf._eval_rewrite_as_uppergammac                 K   4   t jt | tt }t jt t|tt|   S Nr   rH   r   r   r	   fresnelcfresnelsr-   ru   rv   rS   r3   r3   r4   _eval_rewrite_as_fresnels      zerf._eval_rewrite_as_fresnelsc                 K   rx   ry   rz   r}   r3   r3   r4   _eval_rewrite_as_fresnelc   r   zerf._eval_rewrite_as_fresnelcc                 K   s.   |t t ttjgg dgtddg|d  S Nr   r&   r   r	   r$   r   rs   r
   r-   ru   rv   r3   r3   r4   _eval_rewrite_as_meijerg      .zerf._eval_rewrite_as_meijergc                 K   s.   d| t t ttjgdtj g|d   S Nr&      r   r	   r#   r   rs   r   r3   r3   r4   _eval_rewrite_as_hyper   r   zerf._eval_rewrite_as_hyperc                 K   s,   t |d | |ttj|d  t t  S Nr&   r   expintr   rs   r	   r   r3   r3   r4   _eval_rewrite_as_expint      ,zerf._eval_rewrite_as_expintNc                 K   sb   ddl m} |r#|||tj}|tju r#tjt| t|d    S tjt|t|d    S )Nr   )limitr&   )	sympy.series.limitsr   r   rG   rI   rJ   _erfsr   rH   )r-   ru   limitvarrv   r   limr3   r3   r4   _eval_rewrite_as_tractable   s   
zerf._eval_rewrite_as_tractablec                 K      t jt| S ry   )r   rH   erfcr   r3   r3   r4   _eval_rewrite_as_erfc      zerf._eval_rewrite_as_erfcc                 K      t  tt |  S ry   r   erfir   r3   r3   r4   _eval_rewrite_as_erfi      zerf._eval_rewrite_as_erfir   c                 C   sr   | j d j|||d}||d}|tju r$|j|d|dkr dndd}||jv r4|jr4d| tt	 S | 
|S )Nr   logxcdirr   -+dirr&   )r'   as_leading_termsubsr   ComplexInfinityr   free_symbolsrK   r   r	   r,   r-   r0   r   r   rS   arg0r3   r3   r4   _eval_as_leading_term   s   

zerf._eval_as_leading_termc              	      s   ddl m} |d }|tjtjfv ra| jd  z	 |\}}W n ttfy-   |  Y S w | }|j	rat
|| }	 fddt|	D |d |	  |g }
tjt d  tt t|
   S tt| ||||S )Nr   Orderc                    s>   g | ]}t j| td | d   d | d  d |   qS r&   r7   )r   rJ   r   .0r\   ru   r3   r4   
<listcomp>  s    6z%erf._eval_aseries.<locals>.<listcomp>r7   r&   )sympy.series.orderr   r   rG   rI   r'   leadterm
ValueErrorNotImplementedErroris_positiver   rangerH   r   r   r	   r   superr6   _eval_aseries)r-   rZ   args0r0   r   r   point_exnewns	__class__r   r4   r      s&   

$zerf._eval_aseriesr7   ry   r_   )__name__
__module____qualname____doc__
unbranchedr<   rB   classmethodrU   staticmethodr   r]   rc   rg   rk   rm   rw   r~   r   r   r   r   r   r   r   r   r   r5   r+   __classcell__r3   r3   r   r4   r6   0   s4    L


!

r6   c                   @   s   e Zd ZdZdZd*ddZd*ddZedd	 Ze	e
d
d Zdd Zdd Zd+ddZdd Zdd Zdd Zdd Zdd Zdd Zdd  Zd!d" Zd#d$ Zd,d&d'ZeZd(d) ZdS )-r   a&  
    Complementary Error Function.

    Explanation
    ===========

    The function is defined as:

    .. math ::
        \mathrm{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} \mathrm{d}t

    Examples
    ========

    >>> from sympy import I, oo, erfc
    >>> from sympy.abc import z

    Several special values are known:

    >>> erfc(0)
    1
    >>> erfc(oo)
    0
    >>> erfc(-oo)
    2
    >>> erfc(I*oo)
    -oo*I
    >>> erfc(-I*oo)
    oo*I

    The error function obeys the mirror symmetry:

    >>> from sympy import conjugate
    >>> conjugate(erfc(z))
    erfc(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(erfc(z), z)
    -2*exp(-z**2)/sqrt(pi)

    It also follows

    >>> erfc(-z)
    2 - erfc(z)

    We can numerically evaluate the complementary error function to arbitrary
    precision on the whole complex plane:

    >>> erfc(4).evalf(30)
    0.0000000154172579002800188521596734869

    >>> erfc(4*I).evalf(30)
    1.0 - 1296959.73071763923152794095062*I

    See Also
    ========

    erf: Gaussian error function.
    erfi: Imaginary error function.
    erf2: Two-argument error function.
    erfinv: Inverse error function.
    erfcinv: Inverse Complementary error function.
    erf2inv: Inverse two-argument error function.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Error_function
    .. [2] https://dlmf.nist.gov/7
    .. [3] https://mathworld.wolfram.com/Erfc.html
    .. [4] https://functions.wolfram.com/GammaBetaErf/Erfc

    Tr7   c                 C   s2   |dkrdt | jd d   tt S t| |)Nr7   rW   r   r&   r9   r:   r3   r3   r4   r<   `  r=   z
erfc.fdiffc                 C   r>   r?   rM   r:   r3   r3   r4   rB   f  rC   zerfc.inversec                 C   s   |j r|tju rtjS |tju rtjS |jrtjS t|tr&tj|j	d  S t|t
r0|j	d S |jr6tjS |t}|tjtjfv rF| S | rQd| |  S d S )Nr   r&   )rE   r   rF   rG   r*   rK   rH   rL   rA   r'   rM   rO   r   rI   rP   rQ   r3   r3   r4   rU   m  s&   





z	erfc.evalc                 G   s   | dkrt jS | dk s| d dkrt jS t|}t| d t d }t|dkr9|d  |d  | d  | |  S dt j|  ||   | t| tt	  S rV   )
r   rH   r*   r   r   rX   rJ   r   r   r	   rY   r3   r3   r4   r]     s   "*zerfc.taylor_termc                 C   r^   r_   r`   rb   r3   r3   r4   rc     rd   zerfc._eval_conjugatec                 C   re   r_   rf   rb   r3   r3   r4   rg     rh   zerfc._eval_is_realNc                 K      |  tj dd|dS N	tractableT)r.   r   rewriter6   r-   ru   r   rv   r3   r3   r4   r        zerfc._eval_rewrite_as_tractablec                 K   r   ry   )r   rH   r6   r   r3   r3   r4   _eval_rewrite_as_erf  r   zerfc._eval_rewrite_as_erfc                 K   s   t jttt|   S ry   )r   rH   r   r   r   r3   r3   r4   r     r   zerfc._eval_rewrite_as_erfic                 K   :   t jt | tt }t jt jt t|tt|    S ry   rz   r}   r3   r3   r4   r~        $zerfc._eval_rewrite_as_fresnelsc                 K   r   ry   rz   r}   r3   r3   r4   r     r   zerfc._eval_rewrite_as_fresnelcc              	   K   s4   t j|tt tt jgg dgtddg|d   S r   )r   rH   r   r	   r$   rs   r
   r   r3   r3   r4   r        4zerfc._eval_rewrite_as_meijergc                 K   s4   t jd| tt tt jgdt j g|d    S r   )r   rH   r   r	   r#   rs   r   r3   r3   r4   r     r   zerfc._eval_rewrite_as_hyperc                 K   s@   ddl m} tjt|d | tj|tj|d tt    S rn   )rr   rp   r   rH   r   rs   r	   rt   r3   r3   r4   rw     s   4z erfc._eval_rewrite_as_uppergammac                 K   s2   t jt|d |  |tt j|d  tt  S r   )r   rH   r   r   rs   r	   r   r3   r3   r4   r     s   2zerfc._eval_rewrite_as_expintc                 K   
   |  tS ry   r   r-   r/   r3   r3   r4   _eval_expand_func     
zerfc._eval_expand_funcr   c                 C   s^   | j d j|||d}||d}|tju r$|j|d|dkr dndd}|jr*tjS | |S )Nr   r   r   r   r   r   )	r'   r   r   r   r   r   rK   rH   r,   r   r3   r3   r4   r     s   

zerfc._eval_as_leading_termc                 C   s   t jt| j |||| S ry   )r   rH   r6   r'   r   )r-   rZ   r   r0   r   r3   r3   r4   r        zerfc._eval_aseriesr   ry   r_   )r   r   r   r   r   r<   rB   r   rU   r   r   r]   rc   rg   r   r   r   r~   r   r   r   rw   r   r   r   r5   r+   r   r3   r3   r3   r4   r     s2    L




r   c                       s   e Zd ZdZdZd*ddZedd Zee	dd	 Z
d
d Zdd Zdd Zd+ddZdd Zdd Zdd Zdd Zdd Zdd Zdd  Zd!d" Zd#d$ ZeZd,d&d'Z fd(d)Z  ZS )-r   a  
    Imaginary error function.

    Explanation
    ===========

    The function erfi is defined as:

    .. math ::
        \mathrm{erfi}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{t^2} \mathrm{d}t

    Examples
    ========

    >>> from sympy import I, oo, erfi
    >>> from sympy.abc import z

    Several special values are known:

    >>> erfi(0)
    0
    >>> erfi(oo)
    oo
    >>> erfi(-oo)
    -oo
    >>> erfi(I*oo)
    I
    >>> erfi(-I*oo)
    -I

    In general one can pull out factors of -1 and $I$ from the argument:

    >>> erfi(-z)
    -erfi(z)

    >>> from sympy import conjugate
    >>> conjugate(erfi(z))
    erfi(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(erfi(z), z)
    2*exp(z**2)/sqrt(pi)

    We can numerically evaluate the imaginary error function to arbitrary
    precision on the whole complex plane:

    >>> erfi(2).evalf(30)
    18.5648024145755525987042919132

    >>> erfi(-2*I).evalf(30)
    -0.995322265018952734162069256367*I

    See Also
    ========

    erf: Gaussian error function.
    erfc: Complementary error function.
    erf2: Two-argument error function.
    erfinv: Inverse error function.
    erfcinv: Inverse Complementary error function.
    erf2inv: Inverse two-argument error function.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Error_function
    .. [2] https://mathworld.wolfram.com/Erfi.html
    .. [3] https://functions.wolfram.com/GammaBetaErf/Erfi

    Tr7   c                 C   s0   |dkrdt | jd d  tt S t| |r8   r9   r:   r3   r3   r4   r<        
z
erfi.fdiffc                 C   s   |j r|tju rtjS |jrtjS |tju rtjS |jrtjS | r)| |  S |t}|d urf|tju r9tS t	|t
rEt|jd  S t	|trTttj|jd   S t	|trh|jd jrjt|jd  S d S d S d S rD   )rE   r   rF   rK   r*   rG   rP   rO   r   rL   rA   r'   rM   rH   rN   rR   ru   nzr3   r3   r4   rU   "  s.   





z	erfi.evalc                 G   s   | dk s
| d dkrt jS t|}t| d t d }t|dkr1|d |d  | d  | |  S d||   | t| tt  S rV   )r   r*   r   r   rX   r   r   r	   rY   r3   r3   r4   r]   @  s     zerfi.taylor_termc                 C   r^   r_   r`   rb   r3   r3   r4   rc   M  rd   zerfi._eval_conjugatec                 C   re   r_   rf   rb   r3   r3   r4   _eval_is_extended_realP  rh   zerfi._eval_is_extended_realc                 C   re   r_   rl   rb   r3   r3   r4   rm   S  rh   zerfi._eval_is_zeroNc                 K   r   r   r   r   r3   r3   r4   r   V  r   zerfi._eval_rewrite_as_tractablec                 K   r   ry   )r   r6   r   r3   r3   r4   r   Y  r   zerfi._eval_rewrite_as_erfc                 K   s   t tt |  t  S ry   )r   r   r   r3   r3   r4   r   \  rd   zerfi._eval_rewrite_as_erfcc                 K   4   t jt | tt }t jt t|tt|   S ry   rz   r}   r3   r3   r4   r~   _  r   zerfi._eval_rewrite_as_fresnelsc                 K   r   ry   rz   r}   r3   r3   r4   r   c  r   zerfi._eval_rewrite_as_fresnelcc                 K   s0   |t t ttjgg dgtddg|d   S r   r   r   r3   r3   r4   r   g     0zerfi._eval_rewrite_as_meijergc                 K   s,   d| t t ttjgdtj g|d  S r   r   r   r3   r3   r4   r   j  r   zerfi._eval_rewrite_as_hyperc                 K   s>   ddl m} t|d  | |tj|d  tt tj  S rn   )rr   rp   r   r   rs   r	   rH   rt   r3   r3   r4   rw   m  s   2z erfi._eval_rewrite_as_uppergammac                 K   s0   t |d  | |ttj|d   t t  S r   r   r   r3   r3   r4   r   q  r   zerfi._eval_rewrite_as_expintc                 K   r   ry   r   r   r3   r3   r4   r   t  r   zerfi._eval_expand_funcr   c                 C   s\   | j d j|||d}||d}||jv r!|jr!d| tt S |jr)| |S | |S )Nr   r   r&   )	r'   r   r   r   rK   r   r	   rj   r,   r   r3   r3   r4   r   y  s   

zerfi._eval_as_leading_termc                    s   ddl m} |d }|tju r:| jd   fddt|D |d |  |g }t t d tt	 t
|   S tt| ||||S )Nr   r   c                    s4   g | ]}t d | d d |  d | d    qS r   )r   r   r   r3   r4   r     s    ,z&erfi._eval_aseries.<locals>.<listcomp>r7   r&   )r   r   r   rG   r'   r   r   r   r   r	   r   r   r   r   r-   rZ   r   r0   r   r   r   r   r   r   r4   r     s   


"zerfi._eval_aseriesr   ry   r_   )r   r   r   r   r   r<   r   rU   r   r   r]   rc   r   rm   r   r   r   r~   r   r   r   rw   r   r   r5   r+   r   r   r   r3   r3   r   r4   r     s2    I




r   c                   @   s   e Zd ZdZdd Zedd Zdd Zdd	 Zd
d Z	dd Z
dd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zd S )!erf2a?  
    Two-argument error function.

    Explanation
    ===========

    This function is defined as:

    .. math ::
        \mathrm{erf2}(x, y) = \frac{2}{\sqrt{\pi}} \int_x^y e^{-t^2} \mathrm{d}t

    Examples
    ========

    >>> from sympy import oo, erf2
    >>> from sympy.abc import x, y

    Several special values are known:

    >>> erf2(0, 0)
    0
    >>> erf2(x, x)
    0
    >>> erf2(x, oo)
    1 - erf(x)
    >>> erf2(x, -oo)
    -erf(x) - 1
    >>> erf2(oo, y)
    erf(y) - 1
    >>> erf2(-oo, y)
    erf(y) + 1

    In general one can pull out factors of -1:

    >>> erf2(-x, -y)
    -erf2(x, y)

    The error function obeys the mirror symmetry:

    >>> from sympy import conjugate
    >>> conjugate(erf2(x, y))
    erf2(conjugate(x), conjugate(y))

    Differentiation with respect to $x$, $y$ is supported:

    >>> from sympy import diff
    >>> diff(erf2(x, y), x)
    -2*exp(-x**2)/sqrt(pi)
    >>> diff(erf2(x, y), y)
    2*exp(-y**2)/sqrt(pi)

    See Also
    ========

    erf: Gaussian error function.
    erfc: Complementary error function.
    erfi: Imaginary error function.
    erfinv: Inverse error function.
    erfcinv: Inverse Complementary error function.
    erf2inv: Inverse two-argument error function.

    References
    ==========

    .. [1] https://functions.wolfram.com/GammaBetaErf/Erf2/

    c                 C   sX   | j \}}|dkrdt|d   tt S |dkr'dt|d   tt S t| |)Nr7   rW   r&   )r'   r   r   r	   r   r-   r;   r0   r1   r3   r3   r4   r<     s   

z
erf2.fdiffc                 C   s   t jt jt jf}|t ju s|t ju rt jS ||krt jS ||v s$||v r,t|t| S t|tr=|jd |kr=|jd S |j	sO|j	sO|j
rI|jsO|j
rW|jrWt|t| S | }| }|rk|rk| | |  S |so|rwt|t| S d S rD   )r   rG   rI   r*   rF   r6   rL   rN   r'   rK   r(   is_infiniterP   )rR   r0   r1   chksign_xsign_yr3   r3   r4   rU     s,   
z	erf2.evalc                 C   s    |  | jd  | jd  S rD   r`   rb   r3   r3   r4   rc     s    zerf2._eval_conjugatec                 C   s   | j d jo| j d jS rD   rf   rb   r3   r3   r4   r        zerf2._eval_is_extended_realc                 K   s   t |t | S ry   r6   r-   r0   r1   rv   r3   r3   r4   r        zerf2._eval_rewrite_as_erfc                 K   s   t |t | S ry   r   r   r3   r3   r4   r     r   zerf2._eval_rewrite_as_erfcc                 K   s   t tt | tt |   S ry   r   r   r3   r3   r4   r     r   zerf2._eval_rewrite_as_erfic                 K      t |tt |t S ry   )r6   r   r|   r   r3   r3   r4   r~     r   zerf2._eval_rewrite_as_fresnelsc                 K   r   ry   )r6   r   r{   r   r3   r3   r4   r   
  r   zerf2._eval_rewrite_as_fresnelcc                 K   r   ry   )r6   r   r$   r   r3   r3   r4   r     r   zerf2._eval_rewrite_as_meijergc                 K   r   ry   )r6   r   r#   r   r3   r3   r4   r     r   zerf2._eval_rewrite_as_hyperc                 K   sh   ddl m} t|d | tj|tj|d tt   t|d | tj|tj|d tt    S rn   rq   )r-   r0   r1   rv   rp   r3   r3   r4   rw     s   ,,z erf2._eval_rewrite_as_uppergammac                 K   r   ry   )r6   r   r   r   r3   r3   r4   r     r   zerf2._eval_rewrite_as_expintc                 K   r   ry   r   r   r3   r3   r4   r     r   zerf2._eval_expand_funcc                 C   s
   t | j S ry   )r   r'   rb   r3   r3   r4   rm     r   zerf2._eval_is_zeroN)r   r   r   r   r<   r   rU   rc   r   r   r   r   r~   r   r   r   rw   r   r   rm   r3   r3   r3   r4   r     s$    E	
r   c                   @   s@   e Zd ZdZdddZdddZedd Zd	d
 Zdd Z	dS )rA   aR  
    Inverse Error Function. The erfinv function is defined as:

    .. math ::
        \mathrm{erf}(x) = y \quad \Rightarrow \quad \mathrm{erfinv}(y) = x

    Examples
    ========

    >>> from sympy import erfinv
    >>> from sympy.abc import x

    Several special values are known:

    >>> erfinv(0)
    0
    >>> erfinv(1)
    oo

    Differentiation with respect to $x$ is supported:

    >>> from sympy import diff
    >>> diff(erfinv(x), x)
    sqrt(pi)*exp(erfinv(x)**2)/2

    We can numerically evaluate the inverse error function to arbitrary
    precision on [-1, 1]:

    >>> erfinv(0.2).evalf(30)
    0.179143454621291692285822705344

    See Also
    ========

    erf: Gaussian error function.
    erfc: Complementary error function.
    erfi: Imaginary error function.
    erf2: Two-argument error function.
    erfcinv: Inverse Complementary error function.
    erf2inv: Inverse two-argument error function.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Error_function#Inverse_functions
    .. [2] https://functions.wolfram.com/GammaBetaErf/InverseErf/

    r7   c                 C   s8   |dkrt tt| | jd d  tj S t| |Nr7   r   r&   r   r	   r   r,   r'   r   rs   r   r:   r3   r3   r4   r<   T  s   &
zerfinv.fdiffc                 C   r>   r?   r   r:   r3   r3   r4   rB   Z  rC   zerfinv.inversec                 C   s   |t ju rt jS |t ju rt jS |jrt jS |t ju rt jS t|t	r.|j
d jr.|j
d S |jr4t jS |d}|d urNt|t	rP|j
d jrR|j
d  S d S d S d S Nr   r   )r   rF   rJ   rI   rK   r*   rH   rG   rL   r6   r'   r(   rO   r   r3   r3   r4   rU   a  s    




zerfinv.evalc                 K      t d| S Nr7   r   r   r3   r3   r4   _eval_rewrite_as_erfcinvw  rh   zerfinv._eval_rewrite_as_erfcinvc                 C   re   r_   rl   rb   r3   r3   r4   rm   z  rh   zerfinv._eval_is_zeroNr   )
r   r   r   r   r<   rB   r   rU   r   rm   r3   r3   r3   r4   rA   !  s    
2

rA   c                   @   sH   e Zd ZdZdddZdddZedd Zd	d
 Zdd Z	dd Z
dS )rM   a  
    Inverse Complementary Error Function. The erfcinv function is defined as:

    .. math ::
        \mathrm{erfc}(x) = y \quad \Rightarrow \quad \mathrm{erfcinv}(y) = x

    Examples
    ========

    >>> from sympy import erfcinv
    >>> from sympy.abc import x

    Several special values are known:

    >>> erfcinv(1)
    0
    >>> erfcinv(0)
    oo

    Differentiation with respect to $x$ is supported:

    >>> from sympy import diff
    >>> diff(erfcinv(x), x)
    -sqrt(pi)*exp(erfcinv(x)**2)/2

    See Also
    ========

    erf: Gaussian error function.
    erfc: Complementary error function.
    erfi: Imaginary error function.
    erf2: Two-argument error function.
    erfinv: Inverse error function.
    erf2inv: Inverse two-argument error function.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Error_function#Inverse_functions
    .. [2] https://functions.wolfram.com/GammaBetaErf/InverseErfc/

    r7   c                 C   s:   |dkrt t t| | jd d  tj S t| |r   r   r:   r3   r3   r4   r<     s   (
zerfcinv.fdiffc                 C   r>   r?   r   r:   r3   r3   r4   rB     rC   zerfcinv.inversec                 C   sJ   |t ju rt jS |jrt jS |t ju rt jS |dkrt jS |jr#t jS d S r   )r   rF   rK   rG   rH   r*   rI   rR   ru   r3   r3   r4   rU     s   

zerfcinv.evalc                 K   r   r   r@   r   r3   r3   r4   _eval_rewrite_as_erfinv  rh   zerfcinv._eval_rewrite_as_erfinvc                 C   s   | j d d jS rD   rl   rb   r3   r3   r4   rm     r   zerfcinv._eval_is_zeroc                 C   re   r_   rl   rb   r3   r3   r4   _eval_is_infinite  rh   zerfcinv._eval_is_infiniteNr   )r   r   r   r   r<   rB   r   rU   r   rm   r   r3   r3   r3   r4   rM   ~  s    
,

rM   c                   @   s,   e Zd ZdZdd Zedd Zdd ZdS )	rN   a2  
    Two-argument Inverse error function. The erf2inv function is defined as:

    .. math ::
        \mathrm{erf2}(x, w) = y \quad \Rightarrow \quad \mathrm{erf2inv}(x, y) = w

    Examples
    ========

    >>> from sympy import erf2inv, oo
    >>> from sympy.abc import x, y

    Several special values are known:

    >>> erf2inv(0, 0)
    0
    >>> erf2inv(1, 0)
    1
    >>> erf2inv(0, 1)
    oo
    >>> erf2inv(0, y)
    erfinv(y)
    >>> erf2inv(oo, y)
    erfcinv(-y)

    Differentiation with respect to $x$ and $y$ is supported:

    >>> from sympy import diff
    >>> diff(erf2inv(x, y), x)
    exp(-x**2 + erf2inv(x, y)**2)
    >>> diff(erf2inv(x, y), y)
    sqrt(pi)*exp(erf2inv(x, y)**2)/2

    See Also
    ========

    erf: Gaussian error function.
    erfc: Complementary error function.
    erfi: Imaginary error function.
    erf2: Two-argument error function.
    erfinv: Inverse error function.
    erfcinv: Inverse complementary error function.

    References
    ==========

    .. [1] https://functions.wolfram.com/GammaBetaErf/InverseErf2/

    c                 C   sb   | j \}}|dkrt| ||d |d  S |dkr,tttj t| ||d  S t| |)Nr7   r&   )r'   r   r,   r   r	   r   rs   r   r   r3   r3   r4   r<     s   
"
zerf2inv.fdiffc                 C   s   |t ju s
|t ju rt jS |jr|jrt jS |jr!|t ju r!t jS |t ju r,|jr,t jS |jr3t|S |t ju r=t| S |jrB|S |t ju rKt|S |jrX|jrTt jS t|S |jr]|S d S ry   )r   rF   rK   r*   rH   rG   rA   rM   )rR   r0   r1   r3   r3   r4   rU     s.   


zerf2inv.evalc                 C   s"   | j \}}|jr|jrdS d S d S )NTrl   )r-   r0   r1   r3   r3   r4   rm   (  s   
zerf2inv._eval_is_zeroN)r   r   r   r   r<   r   rU   rm   r3   r3   r3   r4   rN     s    3	
rN   c                       s   e Zd ZdZedd ZdddZdd Zd	d
 Zdd Z	dd Z
dd ZeZeZeZdddZdd Zd fdd	Zd  fdd	Z fddZ  ZS )!Eia	  
    The classical exponential integral.

    Explanation
    ===========

    For use in SymPy, this function is defined as

    .. math:: \operatorname{Ei}(x) = \sum_{n=1}^\infty \frac{x^n}{n\, n!}
                                     + \log(x) + \gamma,

    where $\gamma$ is the Euler-Mascheroni constant.

    If $x$ is a polar number, this defines an analytic function on the
    Riemann surface of the logarithm. Otherwise this defines an analytic
    function in the cut plane $\mathbb{C} \setminus (-\infty, 0]$.

    **Background**

    The name exponential integral comes from the following statement:

    .. math:: \operatorname{Ei}(x) = \int_{-\infty}^x \frac{e^t}{t} \mathrm{d}t

    If the integral is interpreted as a Cauchy principal value, this statement
    holds for $x > 0$ and $\operatorname{Ei}(x)$ as defined above.

    Examples
    ========

    >>> from sympy import Ei, polar_lift, exp_polar, I, pi
    >>> from sympy.abc import x

    >>> Ei(-1)
    Ei(-1)

    This yields a real value:

    >>> Ei(-1).n(chop=True)
    -0.219383934395520

    On the other hand the analytic continuation is not real:

    >>> Ei(polar_lift(-1)).n(chop=True)
    -0.21938393439552 + 3.14159265358979*I

    The exponential integral has a logarithmic branch point at the origin:

    >>> Ei(x*exp_polar(2*I*pi))
    Ei(x) + 2*I*pi

    Differentiation is supported:

    >>> Ei(x).diff(x)
    exp(x)/x

    The exponential integral is related to many other special functions.
    For example:

    >>> from sympy import expint, Shi
    >>> Ei(x).rewrite(expint)
    -expint(1, x*exp_polar(I*pi)) - I*pi
    >>> Ei(x).rewrite(Shi)
    Chi(x) + Shi(x)

    See Also
    ========

    expint: Generalised exponential integral.
    E1: Special case of the generalised exponential integral.
    li: Logarithmic integral.
    Li: Offset logarithmic integral.
    Si: Sine integral.
    Ci: Cosine integral.
    Shi: Hyperbolic sine integral.
    Chi: Hyperbolic cosine integral.
    uppergamma: Upper incomplete gamma function.

    References
    ==========

    .. [1] https://dlmf.nist.gov/6.6
    .. [2] https://en.wikipedia.org/wiki/Exponential_integral
    .. [3] Abramowitz & Stegun, section 5: https://web.archive.org/web/20201128173312/http://people.math.sfu.ca/~cbm/aands/page_228.htm

    c                 C   sd   |j rtjS |tju rtjS |tju rtjS |j rtjS | \}}|r0t|dt t |  S d S r   )	rK   r   rI   rG   r*   extract_branch_factorr   r   r	   rR   ru   r   rZ   r3   r3   r4   rU     s   

zEi.evalr7   c                 C   s,   t | jd }|dkrt|| S t| |rD   )r   r'   r   r   r-   r;   rS   r3   r3   r4   r<     s   
zEi.fdiffc                 C   s:   | j d td jrt| |tt | S t| |S r   )r'   r   r   r   _eval_evalfr   r	   r-   precr3   r3   r4   r     s   zEi._eval_evalfc                 K   s(   ddl m} |dtd|  tt  S )Nr   ro   r   )rr   rp   r   r   r	   rt   r3   r3   r4   rw     s   zEi._eval_rewrite_as_uppergammac                 K   s   t dtd|  tt  S )Nr7   r   )r   r   r   r	   r   r3   r3   r4   r     r   zEi._eval_rewrite_as_expintc                 K   s$   t |trt|jd S tt|S r_   )rL   r   lir'   r   r   r3   r3   r4   _eval_rewrite_as_li  s   
zEi._eval_rewrite_as_lic                 K   s.   |j rt|t| tt  S t|t| S ry   )is_negativeShiChir   r	   r   r3   r3   r4   _eval_rewrite_as_Si  s   zEi._eval_rewrite_as_SiNc                 K   s   t |t| S ry   )r   _eisr   r3   r3   r4   r     r   zEi._eval_rewrite_as_tractablec                 K   s:   ddl m} ttd|gj}|tj| | |tj|fS Nr   IntegralrT   )sympy.integrals.integralsr
  r   r   namer   Exp1rI   r-   ru   rv   r
  rT   r3   r3   r4   _eval_rewrite_as_Integral  s   zEi._eval_rewrite_as_Integralr   c           	         s   ddl m} | jd |d}| jd j||d}|||}|jrJ||\}}|d u r1t|n|}t|||  t	 ||j
rFtt  S tj S t j|||dS )Nr   )r   )r   r   )sympyr   r'   r   r   r   rK   as_coeff_exponentr   r   r  r   r	   r   r*   r   r   )	r-   r0   r   r   r   x0rS   cer   r3   r4   r     s   zEi._eval_as_leading_termc                    B   | j d |d}|jr| j| j  }||||S t |||S r_   )r'   r   rK   r  _eval_nseriesr   r-   r0   rZ   r   r   r  fr   r3   r4   r    
   zEi._eval_nseriesc                    s|   ddl m} |d }|tju r3| jd   fddt|D |d |  |g }t   t|  S tt	| 
||||S )Nr   r   c                    s   g | ]
}t | |  qS r3   r   r   r   r3   r4   r         z$Ei._eval_aseries.<locals>.<listcomp>r7   )r   r   r   rG   r'   r   r   r   r   r   r   r   r   r   r4   r     s   

zEi._eval_aseriesr   ry   r_   r   )r   r   r   r   r   rU   r<   r   rw   r   r  r  _eval_rewrite_as_Ci_eval_rewrite_as_Chi_eval_rewrite_as_Shir   r  r   r  r   r   r3   r3   r   r4   r   1  s$    W

	
r   c                       sv   e Zd ZdZedd Zdd Zdd Zdd	 Zd
d Z	dd Z
e
Ze
Ze
Zd fdd	Z fddZdd Z  ZS )r   a  
    Generalized exponential integral.

    Explanation
    ===========

    This function is defined as

    .. math:: \operatorname{E}_\nu(z) = z^{\nu - 1} \Gamma(1 - \nu, z),

    where $\Gamma(1 - \nu, z)$ is the upper incomplete gamma function
    (``uppergamma``).

    Hence for $z$ with positive real part we have

    .. math:: \operatorname{E}_\nu(z)
              =   \int_1^\infty \frac{e^{-zt}}{t^\nu} \mathrm{d}t,

    which explains the name.

    The representation as an incomplete gamma function provides an analytic
    continuation for $\operatorname{E}_\nu(z)$. If $\nu$ is a
    non-positive integer, the exponential integral is thus an unbranched
    function of $z$, otherwise there is a branch point at the origin.
    Refer to the incomplete gamma function documentation for details of the
    branching behavior.

    Examples
    ========

    >>> from sympy import expint, S
    >>> from sympy.abc import nu, z

    Differentiation is supported. Differentiation with respect to $z$ further
    explains the name: for integral orders, the exponential integral is an
    iterated integral of the exponential function.

    >>> expint(nu, z).diff(z)
    -expint(nu - 1, z)

    Differentiation with respect to $\nu$ has no classical expression:

    >>> expint(nu, z).diff(nu)
    -z**(nu - 1)*meijerg(((), (1, 1)), ((0, 0, 1 - nu), ()), z)

    At non-postive integer orders, the exponential integral reduces to the
    exponential function:

    >>> expint(0, z)
    exp(-z)/z
    >>> expint(-1, z)
    exp(-z)/z + exp(-z)/z**2

    At half-integers it reduces to error functions:

    >>> expint(S(1)/2, z)
    sqrt(pi)*erfc(sqrt(z))/sqrt(z)

    At positive integer orders it can be rewritten in terms of exponentials
    and ``expint(1, z)``. Use ``expand_func()`` to do this:

    >>> from sympy import expand_func
    >>> expand_func(expint(5, z))
    z**4*expint(1, z)/24 + (-z**3 + z**2 - 2*z + 6)*exp(-z)/24

    The generalised exponential integral is essentially equivalent to the
    incomplete gamma function:

    >>> from sympy import uppergamma
    >>> expint(nu, z).rewrite(uppergamma)
    z**(nu - 1)*uppergamma(1 - nu, z)

    As such it is branched at the origin:

    >>> from sympy import exp_polar, pi, I
    >>> expint(4, z*exp_polar(2*pi*I))
    I*pi*z**3/3 + expint(4, z)
    >>> expint(nu, z*exp_polar(2*pi*I))
    z**(nu - 1)*(exp(2*I*pi*nu) - 1)*gamma(1 - nu) + expint(nu, z)

    See Also
    ========

    Ei: Another related function called exponential integral.
    E1: The classical case, returns expint(1, z).
    li: Logarithmic integral.
    Li: Offset logarithmic integral.
    Si: Sine integral.
    Ci: Cosine integral.
    Shi: Hyperbolic sine integral.
    Chi: Hyperbolic cosine integral.
    uppergamma

    References
    ==========

    .. [1] https://dlmf.nist.gov/8.19
    .. [2] https://functions.wolfram.com/GammaBetaErf/ExpIntegralE/
    .. [3] https://en.wikipedia.org/wiki/Exponential_integral

    c                 C   s  ddl m}m} t|}||krt||S |jr|dks$|js5d| jr5tt||d  |d| | S | \}}|tj	u rBd S |j
rm|dksKd S t||dt t | tj|d   t|d  t||d    S tdt t | | d ||d   |d|  t|| S )Nr   )gammarp   r&   r7   )rr   r   rp   r   r   
is_Integerr   r   r   r*   
is_integerr	   r   rJ   r   r   )rR   nuru   r   rp   nu2rZ   r3   r3   r4   rU   P  s    
"
8>zexpint.evalc                 C   s`   | j \}}|dkr||d   tg ddgddd| gg | S |dkr+t|d | S t| |r   )r'   r$   r   r   )r-   r;   r#  ru   r3   r3   r4   r<   f  s   
,
zexpint.fdiffc                 K   s&   ddl m} ||d  |d| | S )Nr   ro   r7   )rr   rp   )r-   r#  ru   rv   rp   r3   r3   r4   rw   o  s   z"expint._eval_rewrite_as_uppergammac                    s    dkrt |tt t   tt  S  jrM dkrMt|  d  t d  t|t  t	t d  t
 fddt d D    S | S )Nr7   c                    s$   g | ]}t  | d  |  qS r&   r  r   r#  r0   r3   r4   r   {     $ z.expint._eval_rewrite_as_Ei.<locals>.<listcomp>)r   r   r   r	   r!  r   r   E1r   r   r   r   r-   r#  ru   rv   r3   r&  r4   _eval_rewrite_as_Eis  s    
$zexpint._eval_rewrite_as_Eic                 K   s   |  tj tfi |S ry   )r   r   r   r   r3   r3   r4   r     r   zexpint._eval_expand_funcc                 K   s   |dkr| S t |t| S r   )r  r  r)  r3   r3   r4   r    s   zexpint._eval_rewrite_as_Sir   c                    st   | j d |s2| j d }|dkr| j| j  }||||S |jr2|dkr2| j| j  }||||S t |||S rD   )r'   hasr  r  r!  r*  r   )r-   r0   rZ   r   r   r#  r  r   r3   r4   r    s   
zexpint._eval_nseriesc                    s   ddl m} |d }| jd  |tju r:| jd  fddt|D |d|  |g }t  t|  S tt	| 
||||S )Nr   r   r7   c                    s(   g | ]}t j| t | |  qS r3   )r   rJ   r   r   r#  ru   r3   r4   r     s   ( z(expint._eval_aseries.<locals>.<listcomp>)r   r   r'   r   rG   r   r   r   r   r   r   r   r   r,  r4   r     s   


,zexpint._eval_aseriesc                 O   sL   ddl m} | j\}}ttd|j}|||  t| |  |dtjfS Nr   r	  rT   r7   )	r  r
  r'   r   r   r  r   r   rG   )r-   r'   rv   r
  rZ   r0   rT   r3   r3   r4   r    s   
&z expint._eval_rewrite_as_Integralr  )r   r   r   r   r   rU   r<   rw   r*  r   r  r  r  r  r  r   r  r   r3   r3   r   r4   r     s    g
	r   c                 C   s
   t d| S )a+  
    Classical case of the generalized exponential integral.

    Explanation
    ===========

    This is equivalent to ``expint(1, z)``.

    Examples
    ========

    >>> from sympy import E1
    >>> E1(0)
    expint(1, 0)

    >>> E1(5)
    expint(1, 5)

    See Also
    ========

    Ei: Exponential integral.
    expint: Generalised exponential integral.
    li: Logarithmic integral.
    Li: Offset logarithmic integral.
    Si: Sine integral.
    Ci: Cosine integral.
    Shi: Hyperbolic sine integral.
    Chi: Hyperbolic cosine integral.

    r7   )r   r   r3   r3   r4   r(    s   
 r(  c                   @   s   e Zd ZdZedd ZdddZdd Zd	d
 Zdd Z	dd Z
dd ZeZdd ZeZdd Zdd Zd ddZd!ddZdd ZdS )"r  a	  
    The classical logarithmic integral.

    Explanation
    ===========

    For use in SymPy, this function is defined as

    .. math:: \operatorname{li}(x) = \int_0^x \frac{1}{\log(t)} \mathrm{d}t \,.

    Examples
    ========

    >>> from sympy import I, oo, li
    >>> from sympy.abc import z

    Several special values are known:

    >>> li(0)
    0
    >>> li(1)
    -oo
    >>> li(oo)
    oo

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(li(z), z)
    1/log(z)

    Defining the ``li`` function via an integral:
    >>> from sympy import integrate
    >>> integrate(li(z))
    z*li(z) - Ei(2*log(z))

    >>> integrate(li(z),z)
    z*li(z) - Ei(2*log(z))


    The logarithmic integral can also be defined in terms of ``Ei``:

    >>> from sympy import Ei
    >>> li(z).rewrite(Ei)
    Ei(log(z))
    >>> diff(li(z).rewrite(Ei), z)
    1/log(z)

    We can numerically evaluate the logarithmic integral to arbitrary precision
    on the whole complex plane (except the singular points):

    >>> li(2).evalf(30)
    1.04516378011749278484458888919

    >>> li(2*I).evalf(30)
    1.0652795784357498247001125598 + 3.08346052231061726610939702133*I

    We can even compute Soldner's constant by the help of mpmath:

    >>> from mpmath import findroot
    >>> findroot(li, 2)
    1.45136923488338

    Further transformations include rewriting ``li`` in terms of
    the trigonometric integrals ``Si``, ``Ci``, ``Shi`` and ``Chi``:

    >>> from sympy import Si, Ci, Shi, Chi
    >>> li(z).rewrite(Si)
    -log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z))
    >>> li(z).rewrite(Ci)
    -log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z))
    >>> li(z).rewrite(Shi)
    -log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z))
    >>> li(z).rewrite(Chi)
    -log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z))

    See Also
    ========

    Li: Offset logarithmic integral.
    Ei: Exponential integral.
    expint: Generalised exponential integral.
    E1: Special case of the generalised exponential integral.
    Si: Sine integral.
    Ci: Cosine integral.
    Shi: Hyperbolic sine integral.
    Chi: Hyperbolic cosine integral.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Logarithmic_integral
    .. [2] https://mathworld.wolfram.com/LogarithmicIntegral.html
    .. [3] https://dlmf.nist.gov/6
    .. [4] https://mathworld.wolfram.com/SoldnersConstant.html

    c                 C   s<   |j rtjS |tju rtjS |tju rtjS |j rtjS d S ry   )rK   r   r*   rH   rI   rG   r   r3   r3   r4   rU   /  s   

zli.evalr7   c                 C   *   | j d }|dkrtjt| S t| |rD   r'   r   rH   r   r   r   r3   r3   r4   r<   :     

zli.fdiffc                 C   s"   | j d }|js| | S d S r_   )r'   is_extended_negativer,   ra   r-   ru   r3   r3   r4   rc   A  s   
zli._eval_conjugatec                 K   s   t |td S r   )Lir  r   r3   r3   r4   _eval_rewrite_as_LiG  r   zli._eval_rewrite_as_Lic                 K   s   t t|S ry   )r   r   r   r3   r3   r4   r*  J  rh   zli._eval_rewrite_as_Eic                 K   sP   ddl m} |dt|  tjtt|ttjt|    tt|  S Nr   ro   )rr   rp   r   r   rs   rH   rt   r3   r3   r4   rw   M  s   "zli._eval_rewrite_as_uppergammac                 K   sX   t tt| tttt|   tjttjt| tt|   ttt|  S ry   )Cir   r   Sir   rs   rH   r   r3   r3   r4   r  R  s
   ""zli._eval_rewrite_as_Sic                 K   s<   t t|tt| tjttjt| tt|   S ry   )r  r   r  r   rs   rH   r   r3   r3   r4   r  X  s   <zli._eval_rewrite_as_Shic                 K   s@   t |tddt | tjt t |t tjt |    t S )N)r7   r7   )r&   r&   )r   r#   r   rs   rH   r   r   r3   r3   r4   r   ]  s
   "zli._eval_rewrite_as_hyperc                 K   sF   t t |  tjt tjt | t t |   tddt |  S )N)r3   r   ))r   r   r3   )r   r   rs   rH   r$   r   r3   r3   r4   r   a  s   2zli._eval_rewrite_as_meijergNc                 K   s   |t t| S ry   )r  r   r   r3   r3   r4   r   e  r   zli._eval_rewrite_as_tractabler   c                    s:   | j d   fddtd|D }ttt  t|  S )Nr   c                    s$   g | ]}t  | t||  qS r3   )r   r   r   r   r3   r4   r   j  r'  z$li._eval_nseries.<locals>.<listcomp>r7   )r'   r   r   r   r   )r-   r0   rZ   r   r   r   r3   r   r4   r  h  s   
zli._eval_nseriesc                 C      | j d }|jr
dS d S ri   rl   r2  r3   r3   r4   rm   m     
zli._eval_is_zeror   ry   r  )r   r   r   r   r   rU   r<   rc   r4  r*  rw   r  r  r  r  r   r   r   r  rm   r3   r3   r3   r4   r    s$    c




r  c                   @   sJ   e Zd ZdZedd ZdddZdd Zd	d
 ZdddZ	dddZ
dS )r3  ab  
    The offset logarithmic integral.

    Explanation
    ===========

    For use in SymPy, this function is defined as

    .. math:: \operatorname{Li}(x) = \operatorname{li}(x) - \operatorname{li}(2)

    Examples
    ========

    >>> from sympy import Li
    >>> from sympy.abc import z

    The following special value is known:

    >>> Li(2)
    0

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(Li(z), z)
    1/log(z)

    The shifted logarithmic integral can be written in terms of $li(z)$:

    >>> from sympy import li
    >>> Li(z).rewrite(li)
    li(z) - li(2)

    We can numerically evaluate the logarithmic integral to arbitrary precision
    on the whole complex plane (except the singular points):

    >>> Li(2).evalf(30)
    0

    >>> Li(4).evalf(30)
    1.92242131492155809316615998938

    See Also
    ========

    li: Logarithmic integral.
    Ei: Exponential integral.
    expint: Generalised exponential integral.
    E1: Special case of the generalised exponential integral.
    Si: Sine integral.
    Ci: Cosine integral.
    Shi: Hyperbolic sine integral.
    Chi: Hyperbolic cosine integral.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Logarithmic_integral
    .. [2] https://mathworld.wolfram.com/LogarithmicIntegral.html
    .. [3] https://dlmf.nist.gov/6

    c                 C   s&   |t ju rt jS |t dkrt jS d S r   )r   rG   r*   r   r3   r3   r4   rU     s
   
zLi.evalr7   c                 C   r.  rD   r/  r   r3   r3   r4   r<     r0  zLi.fdiffc                 C   s   |  t|S ry   )r   r  evalfr   r3   r3   r4   r     r   zLi._eval_evalfc                 K   s   t |t d S r   )r  r   r3   r3   r4   r    r   zLi._eval_rewrite_as_liNc                 K   s   |  tj dddS )Nr   T)r.   )r   r  r   r3   r3   r4   r     rd   zLi._eval_rewrite_as_tractabler   c                 C   s   | j | j }||||S ry   )r  r'   r  )r-   r0   rZ   r   r   r  r3   r3   r4   r    s   zLi._eval_nseriesr   ry   r  )r   r   r   r   r   rU   r<   r   r  r   r  r3   r3   r3   r4   r3  r  s    @


r3  c                       sH   e Zd ZdZedd ZdddZdd Zd	d
 Zd fdd	Z	  Z
S )TrigonometricIntegralz) Base class for trigonometric integrals. c                 C   s(  |t ju r| jS |t ju r|  S |t ju r|  S |jr | jS |t	t
}|d u r7| ddkr7|t
}|d urA| |dS |t	t
 }|d urS| |dS |t	d}|d u rj| ddkrj|d}|d urs| |S | \}}|dkr||krd S dt t
 | | d | | S )Nr   r7   r   r&   )r   r*   _atzerorG   _atinfrI   	_atneginfrK   rO   r   r   	_trigfunc_Ifactor_minusfactorr   r	   r   r3   r3   r4   rU     s2   





"zTrigonometricIntegral.evalr7   c                 C   s.   t | jd }|dkr| || S t| |rD   )r   r'   r?  r   r   r3   r3   r4   r<     s   
zTrigonometricIntegral.fdiffc                 K   s   |  |tS ry   )r   r   r   r   r3   r3   r4   r*    r   z)TrigonometricIntegral._eval_rewrite_as_Eic                 K   s   ddl m} | ||S r5  )rr   rp   r   r   rt   r3   r3   r4   rw      s   z1TrigonometricIntegral._eval_rewrite_as_uppergammar   c                    s   | j d |ddkrt |||S | ||||}| ddkr(|d8 }|jtdd dd}| ddkrA|tt| 7 }||| j d |||S )Nr   r7   c                 S   s   | | | S ry   r3   )rT   rZ   r3   r3   r4   <lambda>  s    z5TrigonometricIntegral._eval_nseries.<locals>.<lambda>F)simultaneous)	r'   r   r   r  r?  replacer   r   r   )r-   r0   rZ   r   r   
baseseriesr   r3   r4   r    s   z#TrigonometricIntegral._eval_nseriesr   r  )r   r   r   r   r   rU   r<   r*  rw   r  r   r3   r3   r   r4   r;    s    

r;  c                       s   e Zd ZdZeZejZe	dd Z
e	dd Ze	dd Ze	dd	 Zd
d Zdd ZeZdddZ fddZdd Z  ZS )r7  a  
    Sine integral.

    Explanation
    ===========

    This function is defined by

    .. math:: \operatorname{Si}(z) = \int_0^z \frac{\sin{t}}{t} \mathrm{d}t.

    It is an entire function.

    Examples
    ========

    >>> from sympy import Si
    >>> from sympy.abc import z

    The sine integral is an antiderivative of $sin(z)/z$:

    >>> Si(z).diff(z)
    sin(z)/z

    It is unbranched:

    >>> from sympy import exp_polar, I, pi
    >>> Si(z*exp_polar(2*I*pi))
    Si(z)

    Sine integral behaves much like ordinary sine under multiplication by ``I``:

    >>> Si(I*z)
    I*Shi(z)
    >>> Si(-z)
    -Si(z)

    It can also be expressed in terms of exponential integrals, but beware
    that the latter is branched:

    >>> from sympy import expint
    >>> Si(z).rewrite(expint)
    -I*(-expint(1, z*exp_polar(-I*pi/2))/2 +
         expint(1, z*exp_polar(I*pi/2))/2) + pi/2

    It can be rewritten in the form of sinc function (by definition):

    >>> from sympy import sinc
    >>> Si(z).rewrite(sinc)
    Integral(sinc(_t), (_t, 0, z))

    See Also
    ========

    Ci: Cosine integral.
    Shi: Hyperbolic sine integral.
    Chi: Hyperbolic cosine integral.
    Ei: Exponential integral.
    expint: Generalised exponential integral.
    sinc: unnormalized sinc function
    E1: Special case of the generalised exponential integral.
    li: Logarithmic integral.
    Li: Offset logarithmic integral.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral

    c                 C   s
   t tj S ry   r	   r   rs   rR   r3   r3   r4   r=  [     
z	Si._atinfc                 C   s   t  tj S ry   rF  rG  r3   r3   r4   r>  _  s   zSi._atneginfc                 C   
   t | S ry   )r7  r   r3   r3   r4   rA  c  rH  zSi._minusfactorc                 C      t t| | S ry   )r   r  rR   ru   signr3   r3   r4   r@  g     zSi._Ifactorc                 K   s2   t d ttt| ttt |  d t  S r   )r	   r(  r   r   r   r3   r3   r4   r   k  s   2zSi._eval_rewrite_as_expintc                 K   s2   ddl m} ttd|gj}|t||d|fS r  )r  r
  r   r   r  r"   r  r3   r3   r4   r  o  s   zSi._eval_rewrite_as_IntegralNr   c                 C   sh   | j d j|||d}||d}|tju r%|j|dt|jr!dndd}|jr*|S |j	s2| 
|S | S Nr   r   r   r   r   r'   r   r   r   rF   r   r   r  rK   r   r,   r   r3   r3   r4   r   v  s   

zSi._eval_as_leading_termc           	         s   ddl m} |d }|tju rX| jd   fddt|d d D |d |  |g } fddt|d D |d |  |g }td t t|   t	 t|   S t
t| ||||S )Nr   r   c                    2   g | ]}t j| td |   d | d   qS r   r   rJ   r   r   r   r3   r4   r         *z$Si._eval_aseries.<locals>.<listcomp>r&   r7   c                    6   g | ]}t j| td | d   d |d    qS r   rQ  r   r   r3   r4   r         .)r   r   r   rG   r'   r   r	   r    r   r!   r   r7  r   )	r-   rZ   r   r0   r   r   r   pqr   r   r4   r     s    




(zSi._eval_aseriesc                 C   r8  ri   rl   r2  r3   r3   r4   rm     r9  zSi._eval_is_zeror_   )r   r   r   r   r!   r?  r   r*   r<  r   r=  r>  rA  r@  r   r  _eval_rewrite_as_sincr   r   rm   r   r3   r3   r   r4   r7    s$    F




r7  c                       st   e Zd ZdZeZejZe	dd Z
e	dd Ze	dd Ze	dd	 Zd
d Zdd ZdddZ fddZ  ZS )r6  a  
    Cosine integral.

    Explanation
    ===========

    This function is defined for positive $x$ by

    .. math:: \operatorname{Ci}(x) = \gamma + \log{x}
                         + \int_0^x \frac{\cos{t} - 1}{t} \mathrm{d}t
           = -\int_x^\infty \frac{\cos{t}}{t} \mathrm{d}t,

    where $\gamma$ is the Euler-Mascheroni constant.

    We have

    .. math:: \operatorname{Ci}(z) =
        -\frac{\operatorname{E}_1\left(e^{i\pi/2} z\right)
               + \operatorname{E}_1\left(e^{-i \pi/2} z\right)}{2}

    which holds for all polar $z$ and thus provides an analytic
    continuation to the Riemann surface of the logarithm.

    The formula also holds as stated
    for $z \in \mathbb{C}$ with $\Re(z) > 0$.
    By lifting to the principal branch, we obtain an analytic function on the
    cut complex plane.

    Examples
    ========

    >>> from sympy import Ci
    >>> from sympy.abc import z

    The cosine integral is a primitive of $\cos(z)/z$:

    >>> Ci(z).diff(z)
    cos(z)/z

    It has a logarithmic branch point at the origin:

    >>> from sympy import exp_polar, I, pi
    >>> Ci(z*exp_polar(2*I*pi))
    Ci(z) + 2*I*pi

    The cosine integral behaves somewhat like ordinary $\cos$ under
    multiplication by $i$:

    >>> from sympy import polar_lift
    >>> Ci(polar_lift(I)*z)
    Chi(z) + I*pi/2
    >>> Ci(polar_lift(-1)*z)
    Ci(z) + I*pi

    It can also be expressed in terms of exponential integrals:

    >>> from sympy import expint
    >>> Ci(z).rewrite(expint)
    -expint(1, z*exp_polar(-I*pi/2))/2 - expint(1, z*exp_polar(I*pi/2))/2

    See Also
    ========

    Si: Sine integral.
    Shi: Hyperbolic sine integral.
    Chi: Hyperbolic cosine integral.
    Ei: Exponential integral.
    expint: Generalised exponential integral.
    E1: Special case of the generalised exponential integral.
    li: Logarithmic integral.
    Li: Offset logarithmic integral.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral

    c                 C      t jS ry   )r   r*   rG  r3   r3   r4   r=       z	Ci._atinfc                 C   s   t t S ry   )r   r	   rG  r3   r3   r4   r>    s   zCi._atneginfc                 C      t |tt  S ry   r6  r   r	   r   r3   r3   r4   rA    rM  zCi._minusfactorc                 C      t |tt d |  S r   r  r   r	   rK  r3   r3   r4   r@       zCi._Ifactorc                 K   s(   t tt| t tt |   d S r   )r(  r   r   r   r3   r3   r4   r     s   (zCi._eval_rewrite_as_expintc                 K   sH   ddl m} ttd|gj}tjt| |dt| | |d|f S r-  )	r  r
  r   r   r  r   r   r   r    r  r3   r3   r4   r    s   *zCi._eval_rewrite_as_IntegralNr   c                 C      | j d j|||d}||d}|tju r%|j|dt|jr!dndd}|jrC|	|\}}|d u r7t
|n|}t
|||  t S |jrK| |S | S rN  r'   r   r   r   rF   r   r   r  rK   r  r   r   rj   r,   r-   r0   r   r   rS   r   r  r  r3   r3   r4   r        

zCi._eval_as_leading_termc           
         s   ddl m} |d }|tjtjfv rd| jd   fddt|d d D |d |  |g } fddt|d D |d |  |g }t t|  t	 t|   }	|tju rb|	t
t 7 }	|	S tt| ||||S )Nr   r   c                    rP  r   rQ  r   r   r3   r4   r     rR  z$Ci._eval_aseries.<locals>.<listcomp>r&   r7   c                    rS  r   rQ  r   r   r3   r4   r     rT  )r   r   r   rG   rI   r'   r   r!   r   r    r   r	   r   r6  r   )
r-   rZ   r   r0   r   r   r   rU  rV  resultr   r   r4   r     s&   



 
zCi._eval_aseriesr_   )r   r   r   r   r    r?  r   r   r<  r   r=  r>  rA  r@  r   r  r   r   r   r3   r3   r   r4   r6    s     O




r6  c                   @   sd   e Zd ZdZeZejZe	dd Z
e	dd Ze	dd Ze	dd	 Zd
d Zdd ZdddZdS )r  a  
    Sinh integral.

    Explanation
    ===========

    This function is defined by

    .. math:: \operatorname{Shi}(z) = \int_0^z \frac{\sinh{t}}{t} \mathrm{d}t.

    It is an entire function.

    Examples
    ========

    >>> from sympy import Shi
    >>> from sympy.abc import z

    The Sinh integral is a primitive of $\sinh(z)/z$:

    >>> Shi(z).diff(z)
    sinh(z)/z

    It is unbranched:

    >>> from sympy import exp_polar, I, pi
    >>> Shi(z*exp_polar(2*I*pi))
    Shi(z)

    The $\sinh$ integral behaves much like ordinary $\sinh$ under
    multiplication by $i$:

    >>> Shi(I*z)
    I*Si(z)
    >>> Shi(-z)
    -Shi(z)

    It can also be expressed in terms of exponential integrals, but beware
    that the latter is branched:

    >>> from sympy import expint
    >>> Shi(z).rewrite(expint)
    expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2

    See Also
    ========

    Si: Sine integral.
    Ci: Cosine integral.
    Chi: Hyperbolic cosine integral.
    Ei: Exponential integral.
    expint: Generalised exponential integral.
    E1: Special case of the generalised exponential integral.
    li: Logarithmic integral.
    Li: Offset logarithmic integral.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral

    c                 C   rX  ry   r   rG   rG  r3   r3   r4   r=  h  rY  z
Shi._atinfc                 C   rX  ry   )r   rI   rG  r3   r3   r4   r>  l  rY  zShi._atneginfc                 C   rI  ry   )r  r   r3   r3   r4   rA  p  rH  zShi._minusfactorc                 C   rJ  ry   )r   r7  rK  r3   r3   r4   r@  t  rM  zShi._Ifactorc                 K   s,   t |t ttt |  d tt d  S r   )r(  r   r   r	   r   r3   r3   r4   r   x  s   ,zShi._eval_rewrite_as_expintc                 C   r8  ri   rl   r2  r3   r3   r4   rm   |  r9  zShi._eval_is_zeroNr   c                 C   sb   | j d |}||d}|tju r"|j|dt|jrdndd}|jr'|S |j	s/| 
|S | S )Nr   r   r   r   rO  r   r3   r3   r4   r     s   

zShi._eval_as_leading_termr_   )r   r   r   r   r   r?  r   r*   r<  r   r=  r>  rA  r@  r   rm   r   r3   r3   r3   r4   r  %  s    ?



r  c                   @   s\   e Zd ZdZeZejZe	dd Z
e	dd Ze	dd Ze	dd	 Zd
d ZdddZdS )r  a   
    Cosh integral.

    Explanation
    ===========

    This function is defined for positive $x$ by

    .. math:: \operatorname{Chi}(x) = \gamma + \log{x}
                         + \int_0^x \frac{\cosh{t} - 1}{t} \mathrm{d}t,

    where $\gamma$ is the Euler-Mascheroni constant.

    We have

    .. math:: \operatorname{Chi}(z) = \operatorname{Ci}\left(e^{i \pi/2}z\right)
                         - i\frac{\pi}{2},

    which holds for all polar $z$ and thus provides an analytic
    continuation to the Riemann surface of the logarithm.
    By lifting to the principal branch we obtain an analytic function on the
    cut complex plane.

    Examples
    ========

    >>> from sympy import Chi
    >>> from sympy.abc import z

    The $\cosh$ integral is a primitive of $\cosh(z)/z$:

    >>> Chi(z).diff(z)
    cosh(z)/z

    It has a logarithmic branch point at the origin:

    >>> from sympy import exp_polar, I, pi
    >>> Chi(z*exp_polar(2*I*pi))
    Chi(z) + 2*I*pi

    The $\cosh$ integral behaves somewhat like ordinary $\cosh$ under
    multiplication by $i$:

    >>> from sympy import polar_lift
    >>> Chi(polar_lift(I)*z)
    Ci(z) + I*pi/2
    >>> Chi(polar_lift(-1)*z)
    Chi(z) + I*pi

    It can also be expressed in terms of exponential integrals:

    >>> from sympy import expint
    >>> Chi(z).rewrite(expint)
    -expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2

    See Also
    ========

    Si: Sine integral.
    Ci: Cosine integral.
    Shi: Hyperbolic sine integral.
    Ei: Exponential integral.
    expint: Generalised exponential integral.
    E1: Special case of the generalised exponential integral.
    li: Logarithmic integral.
    Li: Offset logarithmic integral.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral

    c                 C   rX  ry   rd  rG  r3   r3   r4   r=    rY  z
Chi._atinfc                 C   rX  ry   rd  rG  r3   r3   r4   r>    rY  zChi._atneginfc                 C   rZ  ry   r]  r   r3   r3   r4   rA    rM  zChi._minusfactorc                 C   r\  r   r[  rK  r3   r3   r4   r@    r^  zChi._Ifactorc                 K   s.   t  t d t|ttt t |  d  S r   )r   r	   r(  r   r   r3   r3   r4   r     r   zChi._eval_rewrite_as_expintNr   c                 C   r_  rN  r`  ra  r3   r3   r4   r     rb  zChi._eval_as_leading_termr_   )r   r   r   r   r   r?  r   r   r<  r   r=  r>  rA  r@  r   r   r3   r3   r3   r4   r    s    J



r  c                   @   sJ   e Zd ZdZdZedd ZdddZdd	 ZeZ	d
d Z
dd ZeZdS )FresnelIntegralz& Base class for the Fresnel integrals.Tc                 C   s   |t ju rt jS |jrt jS t j}|}d}|d}|d ur%| }|}d}|t}|d ur9| jt | }|}d}|rA|| | S d S )NFr   T)	r   rG   rs   rK   r*   rH   rO   r   _sign)rR   ru   prefactnewargchangedr   r3   r3   r4   rU   		  s(   


zFresnelIntegral.evalr7   c                 C   s0   |dkr|  tjt | jd d  S t| |r   )r?  r   rs   r	   r'   r   r:   r3   r3   r4   r<   (	  r   zFresnelIntegral.fdiffc                 C   re   r_   rf   rb   r3   r3   r4   r   .	  rh   z&FresnelIntegral._eval_is_extended_realc                 C   re   r_   rl   rb   r3   r3   r4   rm   3	  rh   zFresnelIntegral._eval_is_zeroc                 C   r^   r_   r`   rb   r3   r3   r4   rc   6	  rd   zFresnelIntegral._eval_conjugateNr   )r   r   r   r   r   r   rU   r<   r   rk   rm   rc   r5   r+   r3   r3   r3   r4   re  	  s    

re  c                       sf   e Zd ZdZeZej Ze	e
dd Zdd Zdd Zdd	 Zd
d ZdddZ fddZ  ZS )r|   ay  
    Fresnel integral S.

    Explanation
    ===========

    This function is defined by

    .. math:: \operatorname{S}(z) = \int_0^z \sin{\frac{\pi}{2} t^2} \mathrm{d}t.

    It is an entire function.

    Examples
    ========

    >>> from sympy import I, oo, fresnels
    >>> from sympy.abc import z

    Several special values are known:

    >>> fresnels(0)
    0
    >>> fresnels(oo)
    1/2
    >>> fresnels(-oo)
    -1/2
    >>> fresnels(I*oo)
    -I/2
    >>> fresnels(-I*oo)
    I/2

    In general one can pull out factors of -1 and $i$ from the argument:

    >>> fresnels(-z)
    -fresnels(z)
    >>> fresnels(I*z)
    -I*fresnels(z)

    The Fresnel S integral obeys the mirror symmetry
    $\overline{S(z)} = S(\bar{z})$:

    >>> from sympy import conjugate
    >>> conjugate(fresnels(z))
    fresnels(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(fresnels(z), z)
    sin(pi*z**2/2)

    Defining the Fresnel functions via an integral:

    >>> from sympy import integrate, pi, sin, expand_func
    >>> integrate(sin(pi*z**2/2), z)
    3*fresnels(z)*gamma(3/4)/(4*gamma(7/4))
    >>> expand_func(integrate(sin(pi*z**2/2), z))
    fresnels(z)

    We can numerically evaluate the Fresnel integral to arbitrary precision
    on the whole complex plane:

    >>> fresnels(2).evalf(30)
    0.343415678363698242195300815958

    >>> fresnels(-2*I).evalf(30)
    0.343415678363698242195300815958*I

    See Also
    ========

    fresnelc: Fresnel cosine integral.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Fresnel_integral
    .. [2] https://dlmf.nist.gov/7
    .. [3] https://mathworld.wolfram.com/FresnelIntegrals.html
    .. [4] https://functions.wolfram.com/GammaBetaErf/FresnelS
    .. [5] The converging factors for the fresnel integrals
            by John W. Wrench Jr. and Vicki Alley

    c                 G   s   | dk rt jS t|}t|dkr6|d }td  |d  d|  d  d|  d|  d  d|  d   | S |d |d  |   t dd|  d  td|  d    d|  d td|  d   S )	Nr   r7   r   r&         r   rW   r   r*   r   rX   r	   r   rZ   r0   r[   rU  r3   r3   r4   r]   	  s   BVzfresnels.taylor_termc                 K   sN   t jt d tt jt d tt | ttt jt d tt |    S Nrj  r&   r   rH   r   r6   r   r	   r   r3   r3   r4   r   	     Nzfresnels._eval_rewrite_as_erfc                 K   sF   t |d  d ttddgtddtddgt d  |d  d  S )Nr      rj  r&         )r	   r#   r
   r   r3   r3   r4   r   	  s   Fzfresnels._eval_rewrite_as_hyperc              	   K   sr   t |tdd  td|d tdd  | tdd   tg dgtddgtdddgt d  |d  d  S )N	   rj  r&   r   r7   r   rs  )r	   r
   r   r$   r   r3   r3   r4   r   	  s   :4z!fresnels._eval_rewrite_as_meijergc                 K   >   ddl m} ttd|gj}|tt|d  d |d|fS Nr   r	  rT   r&   )r  r
  r   r   r  r!   r	   r  r3   r3   r4   r  	      z"fresnels._eval_rewrite_as_IntegralNr   c                 C   s   ddl m} | jd j|||d}||d}|tju r+|j|dt|j	r'dndd}|j
r6t|d  d S |tjtjfv rQ|tju rEd	nd
}|tj ||| S | |S )Nr   r   r   r   r   r   r   rq  r7   r   )r   r   r'   r   r   r   r   r   r   r  rK   r	   rG   rI   rs   r,   r-   r0   r   r   r   rS   r   r   r3   r3   r4   r   	  s   

zfresnels._eval_as_leading_termc           
         s
  ddl m} |d }|tjtj fv r|| jd  fddtd D }dd  g fddtd D  }dd |D }d	d |D }|tju rNdnd
}	|	tj td t|  t	d t|   
|tdt |  |d   | S t  |||S )Nr   r   c                    n   g | ]3}d | d  k rt j| td | d  dd| d  d | d   dd|   td|   qS rj  r   r7   r&   rQ  r   rZ   ru   r3   r4   r   	      6z*fresnels._eval_aseries.<locals>.<listcomp>r7   r&   c                    v   g | ]7}d | d  k rt j| td | d  dd| d  d | d   dd| d   td| d   qS rj  r7   r&   rQ  r   r{  r3   r4   r   	      >c                 S      g | ]}t d t  | qS r%  r   r	   r   rT   r3   r3   r4   r   	      c                 S   r  r%  r  r  r3   r3   r4   r   	  r  r   )r   r   r   rG   r'   r   rs   r!   r   r    r   r   r	   r   r   
r-   rZ   r   r0   r   r   r   rU  rV  r   r   r{  r4   r   	  s&   
.zfresnels._eval_aseriesr_   )r   r   r   r   r!   r?  r   rH   rf  r   r   r]   r   r   r   r  r   r   r   r3   r3   r   r4   r|   <	  s    T
r|   c                       sd   e Zd ZdZeZejZe	e
dd Zdd Zdd Zdd	 Zd
d ZdddZ fddZ  ZS )r{   au  
    Fresnel integral C.

    Explanation
    ===========

    This function is defined by

    .. math:: \operatorname{C}(z) = \int_0^z \cos{\frac{\pi}{2} t^2} \mathrm{d}t.

    It is an entire function.

    Examples
    ========

    >>> from sympy import I, oo, fresnelc
    >>> from sympy.abc import z

    Several special values are known:

    >>> fresnelc(0)
    0
    >>> fresnelc(oo)
    1/2
    >>> fresnelc(-oo)
    -1/2
    >>> fresnelc(I*oo)
    I/2
    >>> fresnelc(-I*oo)
    -I/2

    In general one can pull out factors of -1 and $i$ from the argument:

    >>> fresnelc(-z)
    -fresnelc(z)
    >>> fresnelc(I*z)
    I*fresnelc(z)

    The Fresnel C integral obeys the mirror symmetry
    $\overline{C(z)} = C(\bar{z})$:

    >>> from sympy import conjugate
    >>> conjugate(fresnelc(z))
    fresnelc(conjugate(z))

    Differentiation with respect to $z$ is supported:

    >>> from sympy import diff
    >>> diff(fresnelc(z), z)
    cos(pi*z**2/2)

    Defining the Fresnel functions via an integral:

    >>> from sympy import integrate, pi, cos, expand_func
    >>> integrate(cos(pi*z**2/2), z)
    fresnelc(z)*gamma(1/4)/(4*gamma(5/4))
    >>> expand_func(integrate(cos(pi*z**2/2), z))
    fresnelc(z)

    We can numerically evaluate the Fresnel integral to arbitrary precision
    on the whole complex plane:

    >>> fresnelc(2).evalf(30)
    0.488253406075340754500223503357

    >>> fresnelc(-2*I).evalf(30)
    -0.488253406075340754500223503357*I

    See Also
    ========

    fresnels: Fresnel sine integral.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Fresnel_integral
    .. [2] https://dlmf.nist.gov/7
    .. [3] https://mathworld.wolfram.com/FresnelIntegrals.html
    .. [4] https://functions.wolfram.com/GammaBetaErf/FresnelC
    .. [5] The converging factors for the fresnel integrals
            by John W. Wrench Jr. and Vicki Alley

    c                 G   s   | dk rt jS t|}t|dkr6|d }td  |d  d|  d  d|  d|  d  d|  d   | S ||d  |   t dd|   td|     d|  d td|    S )	Nr   r7   r   r&   rj  r   rk  rW   rl  rm  r3   r3   r4   r]   5
  s   BFzfresnelc.taylor_termc                 K   sN   t jt d tt jt d tt | ttt jt d tt |    S rn  ro  r   r3   r3   r4   r   B
  rp  zfresnelc._eval_rewrite_as_erfc                 K   s6   |t tddgtjtddgtd  |d  d  S )Nr7   rj     r&   rs  )r#   r
   r   rs   r	   r   r3   r3   r4   r   E
  s   6zfresnelc._eval_rewrite_as_hyperc              	   K   sj   t |tdd  tdt|d d t| d  tg dgtddgtdddgt d  |d  d  S )Nr   rj  r&   r7   r   rs  )r	   r
   r   r   r$   r   r3   r3   r4   r   H
  s   24z!fresnelc._eval_rewrite_as_meijergc                 K   ru  rv  )r  r
  r   r   r  r    r	   r  r3   r3   r4   r  L
  rw  z"fresnelc._eval_rewrite_as_IntegralNr   c                 C   s   ddl m} | jd j|||d}||d}|tju r+|j|dt|j	r'dndd}|j
r0|S |tjtjfv rK|tju r?dnd}|tj ||| S | |S )	Nr   r   r   r   r   r   r7   r   )r   r   r'   r   r   r   r   r   r   r  rK   rG   rI   rs   r,   rx  r3   r3   r4   r   Q
  s   

zfresnelc._eval_as_leading_termc           
         s  ddl m} |d }|tjtj fv r{| jd  fddt D }dd  g fddtd D  }dd |D }d	d |D }|tju rMdnd
}	|	tj td t|  t	d t|   
|tdt |  |d   | S t  |||S )Nr   r   c                    ry  rz  rQ  r   r{  r3   r4   r   j
  r|  z*fresnelc._eval_aseries.<locals>.<listcomp>r7   r&   c                    r}  r~  rQ  r   r{  r3   r4   r   m
  r  c                 S   r  r%  r  r  r3   r3   r4   r   q
  r  c                 S   s   g | ]
}t d t | qS r%  r  r  r3   r3   r4   r   r
  r  r   )r   r   r   rG   r'   r   rs   r    r   r!   r   r   r	   r   r   r  r   r{  r4   r   `
  s&   
.zfresnelc._eval_aseriesr_   )r   r   r   r   r    r?  r   rH   rf  r   r   r]   r   r   r   r  r   r   r   r3   r3   r   r4   r{   	  s    T
r{   c                       s>   e Zd ZdZedd Z fddZdddZd	d
 Z  Z	S )r   zi
    Helper function to make the $\mathrm{erf}(z)$ function
    tractable for the Gruntz algorithm.

    c                 C   s   |j rtjS d S ry   )rK   r   rH   )rR   rS   r3   r3   r4   rU   
  s   z
_erfs.evalc           
         s   ddl m} |d }|tju r7| jd   fddt|D }|d d| d   |}t| |||| S |t	}	|	tju ri| jd   fddt|D }|d d| d   |}t| |||| S t
 ||||S )Nr   r   c                    P   g | ]$}d t t td|  td |   t| d   d| d    qS r7   r&   rj  r   r	   r   r   r   r   r3   r4   r   
      z'_erfs._eval_aseries.<locals>.<listcomp>r7   r&   c                    r  r  r  r   r   r3   r4   r   
  r  )r   r   r   rG   r'   r   r   r  rO   r   r   r   )
r-   rZ   r   r0   r   r   r   lorT   r   r   r4   r   
  s$   






z_erfs._eval_aseriesr7   c                 C   s8   |dkr| j d }dtt d| t|  S t| |)Nr7   r   rW   r&   )r'   r   r	   r   r   r-   r;   ru   r3   r3   r4   r<   
  s   

z_erfs.fdiffc                 K   s   t jt| t|d  S r   )r   rH   r6   r   r   r3   r3   r4   _eval_rewrite_as_intractable
  s   z"_erfs._eval_rewrite_as_intractabler   )
r   r   r   r   r   rU   r   r<   r  r   r3   r3   r   r4   r   
  s    

r   c                       sN   e Zd ZdZ fddZdddZdd Zd fdd	Zd fdd	Z  Z	S )r  z~
    Helper function to make the $\mathrm{Ei}(z)$ and $\mathrm{li}(z)$
    functions tractable for the Gruntz algorithm.

    c                    s|   ddl m} |d tjkrtt| ||||S | jd   fddt|D }|d |d   |}t	| 
|||| S )Nr   r   c                    s$   g | ]}t |d   |d    qS r   r  r   r   r3   r4   r   
  r'  z&_eis._eval_aseries.<locals>.<listcomp>r7   )r   r   r   rG   r   r   r   r'   r   r   r  )r-   rZ   r   r0   r   r   r  r  r   r   r4   r   
  s   
z_eis._eval_aseriesr7   c                 C   s.   |dkr| j d }tj| t| S t| |)Nr7   r   )r'   r   rH   r  r   r  r3   r3   r4   r<   
  s   

z
_eis.fdiffc                 K   s   t | t| S ry   )r   r   r   r3   r3   r4   r  
  r   z!_eis._eval_rewrite_as_intractableNr   c                    sF   | j d |d}|jr| j| j  }|j|||dS t j|||dS )Nr   r   )r'   r   rK   r  r   r   )r-   r0   r   r   r  r  r   r3   r4   r   
  s
   z_eis._eval_as_leading_termc                    r  r_   )r'   r   rK   r  r  r   r  r   r3   r4   r  
  r  z_eis._eval_nseriesr   r_   r  )
r   r   r   r   r   r<   r  r   r  r   r3   r3   r   r4   r  
  s    
r  N)T)Mr   
sympy.corer   sympy.core.addr   sympy.core.cacher   sympy.core.functionr   r   r   sympy.core.numbersr   r	   r
   sympy.core.relationalr   sympy.core.powerr   sympy.core.singletonr   sympy.core.symbolr   r   sympy.core.sympifyr   (sympy.functions.combinatorial.factorialsr   r   r   $sympy.functions.elementary.complexesr   r   r   #sympy.functions.elementary.integersr   r   (sympy.functions.elementary.miscellaneousr   r   &sympy.functions.elementary.exponentialr   r   r   %sympy.functions.elementary.hyperbolicr   r   (sympy.functions.elementary.trigonometricr    r!   r"   sympy.functions.special.hyperr#   r$   r5   r6   r   r   r   rA   rM   rN   r   r   r(  r  r3  r;  r7  r6  r  r  re  r|   r{   r   r  r3   r3   r3   r4   <module>   sj    
 b @ A ]Ra 8 A# (`? 	 ju8 " '1