o
    g=                     @   s   d dl Z d dlmZmZmZ d dlmZ d dlmZm	Z	m
Z
mZmZmZmZmZmZmZmZmZmZmZmZmZmZ d dlZeeZerKd dlmZ G dd ded ZG d	d
 d
eZ dS )    N)TYPE_CHECKINGOptionalUnion)CollectionCommon)URICollectionMetadata	EmbeddingIncludeEnumPyEmbeddingIncludeMetadataDocumentImageWhereIDs	GetResultQueryResultID	OneOrManyWhereDocumentr	   )	ServerAPIc                   @   s  e Zd ZdefddZ					d(dee deeee	 ee
 f  deee  deee  d	eee  d
eee  ddfddZdddddejejgfdeee  dee dee dee dee dedefddZd)dedefddZdddddddejejejgfdeeee	 ee
 f  deee  deee  deee  dedee dee dedefddZ	d*dee dee ddfd d!Z					d(dee deeee	 ee
 f  deee  deee  d	eee  d
eee  ddfd"d#Z					d(dee deeee	 ee
 f  deee  deee  d	eee  d
eee  ddfd$d%Z 			d+dee! dee dee ddfd&d'Z"dS ),
Collectionreturnc                 C   s   | j j| j| j| jdS )zThe total number of embeddings added to the database

        Returns:
            int: The total number of embeddings added to the database

        )collection_idtenantdatabase)_client_countidr   r   )self r    U/var/www/visachat/venv/lib/python3.10/site-packages/chromadb/api/models/Collection.pycount"   s
   zCollection.countNids
embeddings	metadatas	documentsimagesurisc              
   C   P   | j ||||||d}| jj| j|d |d |d |d |d | j| jd dS )	a]  Add embeddings to the data store.
        Args:
            ids: The ids of the embeddings you wish to add
            embeddings: The embeddings to add. If None, embeddings will be computed based on the documents or images using the embedding_function set for the Collection. Optional.
            metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
            documents: The documents to associate with the embeddings. Optional.
            images: The images to associate with the embeddings. Optional.
            uris: The uris of the images to associate with the embeddings. Optional.

        Returns:
            None

        Raises:
            ValueError: If you don't provide either embeddings or documents
            ValueError: If the length of ids, embeddings, metadatas, or documents don't match
            ValueError: If you don't provide an embedding function and don't provide embeddings
            ValueError: If you provide both embeddings and documents
            ValueError: If you provide an id that already exists

        r#   r$   r%   r&   r'   r(   r#   r$   r%   r&   r(   r   r#   r$   r%   r&   r(   r   r   N)!_validate_and_prepare_add_requestr   _addr   r   r   )r   r#   r$   r%   r&   r'   r(   add_requestr    r    r!   add/   s$   #	
zCollection.addwherelimitoffsetwhere_documentincludec           	      C   sZ   | j ||||d}| jj| j|d |d |d |d d||| j| jd
}| j||d dS )	a  Get embeddings and their associate data from the data store. If no ids or where filter is provided returns
        all embeddings up to limit starting at offset.

        Args:
            ids: The ids of the embeddings to get. Optional.
            where: A Where type dict used to filter results by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}}]}`. Optional.
            limit: The number of documents to return. Optional.
            offset: The offset to start returning results from. Useful for paging results with limit. Optional.
            where_document: A WhereDocument type dict used to filter by the documents. E.g. `{$contains: {"text": "hello"}}`. Optional.
            include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`. Ids are always included. Defaults to `["metadatas", "documents"]`. Optional.

        Returns:
            GetResult: A GetResult object containing the results.

        )r#   r0   r3   r4   r#   r0   r3   r4   N)
r   r#   r0   r3   r4   sortr1   r2   r   r   responser4   )!_validate_and_prepare_get_requestr   _getr   r   r   _transform_get_response)	r   r#   r0   r1   r2   r3   r4   get_requestget_resultsr    r    r!   getf   s*   zCollection.get
   c                 C   s    |  | jj| j|| j| jdS )zGet the first few results in the database up to limit

        Args:
            limit: The number of results to return.

        Returns:
            GetResult: A GetResult object containing the results.
        )r   nr   r   )_transform_peek_responser   _peekr   r   r   )r   r1   r    r    r!   peek   s   	zCollection.peekquery_embeddingsquery_textsquery_images
query_uris	n_resultsc	              
   C   sb   | j ||||||||d}	| jj| j|	d |	d |	d |	d |	d | j| jd}
| j|
|	d dS )	a  Get the n_results nearest neighbor embeddings for provided query_embeddings or query_texts.

        Args:
            query_embeddings: The embeddings to get the closes neighbors of. Optional.
            query_texts: The document texts to get the closes neighbors of. Optional.
            query_images: The images to get the closes neighbors of. Optional.
            query_uris: The URIs to be used with data loader. Optional.
            n_results: The number of neighbors to return for each query_embedding or query_texts. Optional.
            where: A Where type dict used to filter results by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}}]}`. Optional.
            where_document: A WhereDocument type dict used to filter by the documents. E.g. `{$contains: {"text": "hello"}}`. Optional.
            include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`, `"distances"`. Ids are always included. Defaults to `["metadatas", "documents", "distances"]`. Optional.

        Returns:
            QueryResult: A QueryResult object containing the results.

        Raises:
            ValueError: If you don't provide either query_embeddings, query_texts, or query_images
            ValueError: If you provide both query_embeddings and query_texts
            ValueError: If you provide both query_embeddings and query_images
            ValueError: If you provide both query_texts and query_images

        )rC   rD   rE   rF   rG   r0   r3   r4   r$   rG   r0   r3   r4   )r   rC   rG   r0   r3   r4   r   r   r6   )#_validate_and_prepare_query_requestr   _queryr   r   r   _transform_query_response)r   rC   rD   rE   rF   rG   r0   r3   r4   query_requestquery_resultsr    r    r!   query   s.   +zCollection.querynamemetadatac                 C   s6   |  | | jj| j||| j| jd | || dS )zModify the collection name or metadata

        Args:
            name: The updated name for the collection. Optional.
            metadata: The updated metadata for the collection. Optional.

        Returns:
            None
        )r   new_namenew_metadatar   r   N)_validate_modify_requestr   _modifyr   r   r   "_update_model_after_modify_success)r   rN   rO   r    r    r!   modify   s   
zCollection.modifyc              
   C   r)   )	a  Update the embeddings, metadatas or documents for provided ids.

        Args:
            ids: The ids of the embeddings to update
            embeddings: The embeddings to update. If None, embeddings will be computed based on the documents or images using the embedding_function set for the Collection. Optional.
            metadatas:  The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
            documents: The documents to associate with the embeddings. Optional.
            images: The images to associate with the embeddings. Optional.
        Returns:
            None
        r*   r#   r$   r%   r&   r(   r+   N)$_validate_and_prepare_update_requestr   _updater   r   r   )r   r#   r$   r%   r&   r'   r(   update_requestr    r    r!   update	  $   	
zCollection.updatec              
   C   r)   )	aO  Update the embeddings, metadatas or documents for provided ids, or create them if they don't exist.

        Args:
            ids: The ids of the embeddings to update
            embeddings: The embeddings to add. If None, embeddings will be computed based on the documents using the embedding_function set for the Collection. Optional.
            metadatas:  The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
            documents: The documents to associate with the embeddings. Optional.

        Returns:
            None
        r*   r#   r$   r%   r&   r(   r+   N)$_validate_and_prepare_upsert_requestr   _upsertr   r   r   )r   r#   r$   r%   r&   r'   r(   upsert_requestr    r    r!   upsert6  rZ   zCollection.upsertc                 C   s<   |  |||}| jj| j|d |d |d | j| jd dS )a8  Delete the embeddings based on ids and/or a where filter

        Args:
            ids: The ids of the embeddings to delete
            where: A Where type dict used to filter the delection by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}]}}`. Optional.
            where_document: A WhereDocument type dict used to filter the deletion by the document content. E.g. `{$contains: {"text": "hello"}}`. Optional.

        Returns:
            None

        Raises:
            ValueError: If you don't provide either ids, where, or where_document
        r#   r0   r3   )r   r#   r0   r3   r   r   N)$_validate_and_prepare_delete_requestr   _deleter   r   r   )r   r#   r0   r3   delete_requestr    r    r!   deletec  s   
zCollection.delete)NNNNN)r>   )NN)NNN)#__name__
__module____qualname__intr"   r   r   r   r   r   r
   r   r   r   r   r/   r	   r%   r&   r   r   r   r   r=   rB   	distancesr   rM   strr   rU   rY   r^   r   rb   r    r    r    r!   r   !   s<   
	




9


0

	


F
$
	




5
	




/r   r   c                   @   s   e Zd ZdZdd ZdS )CollectionNamea  
    A string wrapper to supply users with indicative message about list_collections only
    returning collection names, in lieu of Collection object.

    When a user will try to access an attribute on a CollectionName string, the __getattribute__ method
    of str is invoked first. If a valid str method or property is found, it will be used. Otherwise, the fallback
    __getattr__ defined here is invoked next. It will error if the requested attribute is a Collection
    method or property.

    For example:
    collection_name = client.list_collections()[0] # collection_name = "test"

    collection_name.startsWith("t") # Evaluates to True.
    # __getattribute__ is invoked first, selecting startsWith from str.

    collection_name.add(ids=[...], documents=[...]) # Raises the error defined below
    # __getattribute__ is invoked first, not finding a match in str.
    # __getattr__ from this class is invoked and raises an error

    c                 C   sF   dd t tD }||v rtdt|  d| dtd| d)Nc                 S   s   g | ]\}}| d s|qS )_)
startswith).0memberrj   r    r    r!   
<listcomp>  s    z.CollectionName.__getattr__.<locals>.<listcomp>z\In Chroma v0.6.0, list_collections only returns collection names. Use Client.get_collection(z) to access zK. See https://docs.trychroma.com/deployment/migration for more information.z*'CollectionName' object has no attribute '')inspect
getmembersr   NotImplementedErrorrh   AttributeError)r   item!collection_attributes_and_methodsr    r    r!   __getattr__  s   zCollectionName.__getattr__N)rc   rd   re   __doc__rv   r    r    r    r!   ri     s    ri   )!rp   typingr   r   r   $chromadb.api.models.CollectionCommonr   chromadb.api.typesr   r   r   r	   r
   r   r   r   r   r   r   r   r   r   r   r   logging	getLoggerrc   loggerchromadb.apir   r   rh   ri   r    r    r    r!   <module>   s    L
  e